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Preface

Tumors destroy man in an unique and appalling way, as fl esh of his own 
fl esh, which has somehow been rendered proliferative, rampant, predatory, 
and ungovernable. Th ey are the most concrete and formidable of human 
maladies, yet despite more than 70 years of experimental study they remain 
the least understood.

(Rous 1967)

The broadly held conviction among researchers is that cancer 
ultimately results from an abnormality of the genome. Th e two 
principal competing theories on the nature of that abnormality 
is the subject of this book: Molecular medicine’s search for the 
“material” cause of cancer in the form of gene mutations, and 
the chromosomal imbalance explanation that cancer results from 
global alterations in the dynamical relationships among all the 
genetic and metabolic activities of a cell independent of gene 
mutations.

In 1969, President Nixon proposed to reduce the budget of the 
National Cancer Institute (NCI). However, faced with the magnitude 
of the cancer problem, plus other political considerations, Nixon 
reversed himself embracing as his own the National Cancer 
Act sponsored by Senators Kennedy and Rogers and declared a 
national “war on cancer” in 1971 (Rettig 2006). Planners of this 
war predicted that technology would conquer cancer as it had 
conquered space and molecular biology would lead the way.

In 1986, John Bailar and Elaine Smith of the Harvard School 
of Public Health assessed the overall progress against cancer 
during the years 1950–1982. In the United States, these years were 
associated with increases in the number of deaths from cancer, in 
the crude cancer-related mortality rate, in the age-adjusted mortality 
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VI Preface

rate, and in both the crude and the age-adjusted incidence rates, 
whereas reported survival rates (crude and relative) for cancer 
patients also increased (Bailar and Smith 1986). Notwithstanding 
progress on minor fronts, they concluded we are losing the war 
against cancer.

Eleven years later, Bailar and Gornik took another look at how 
the campaign was going and declared the war against cancer is 
far from over (Bailar and Gornik 1997). “Will we at some future 
time do better in the war against cancer?” the authors asked. 
“Th e present optimism about new therapeutic approaches rooted 
in molecular medicine may turn out to be justified, but the 
arguments are similar in tone and rhetoric to those of decades 
past about chemotherapy, tumor virology, immunology, and other 
approaches. In our view, prudence requires a skeptical view of the 
tacit assumption that marvelous new treatments for cancer are just 
waiting to be discovered.”

In 2004, three federal reports (The CDC’s Morbidity and 
Mortality Report, June 25, Th e Annual Report to the Nation on the 
Status of Cancer, published in Cancer, July 1, and “Living Beyond 
Cancer: Finding a New Balance” issued by the President’s Cancer 
Panel in early June) said the number of cancer cases in the United 
States had reached a new high, and more people are alive aft er a 
diagnosis of cancer than ever before (Twombly 2004). It was not 
clear exactly what that declaration meant, however. Some took this 
to mean there had been marked progress in the treatment of cancer. 
Others were quick to question the implied widespread treatment 
success, saying the numbers are infl ated by increased detection of 
non-lethal cancers by screening and there was no information on 
the quality of life. Even Julia Rowland, director of the NCI’s Offi  ce 
of Cancer Survivorship said, “Th e eff ect of including those cancers 
in the data pool is that 5-year survival rates increase because more 
people who may never have otherwise known they had cancer are 
now considered survivors, thereby masking the more important 
question of whether progress has been made in treating advanced 
solid tumors.”
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John Bailar, professor emeritus of health studies at the University 
of Chicago agreed. He pointed out that the reports by the CDC 
and the President’s Cancer Panel directly compared “survival” 
between two different time frames decades apart. He said that 
made no sense given the potential for over-diagnosis by increased 
screening. Even more recently, a 2005 article (Leaf 2004) and two 
books (Epstein 2005, Faguet 2005) pulled few punches criticizing 
the paltry progress and dashed hopes in the war on cancer.

In an editorial titled “Our Contribution to the Public Fear of 
Cancer”, Bernard Strauss said, “the scientific community has 
managed to confuse the public about the causes of cancer and to 
add to an almost irrational fear of the disease. Th e only way to allay 
this fear is to development eff ective treatment and to understand 
how cancer develops… . The public’s responses to discussions 
of cancer are reminiscent of societies responses to the threat of 
epidemics before the nature of infectious disease was understood” 
(Strauss 1998).

What is the public to make of the confusion caused by the experts 
themselves? Th e public’s dread of cancer and the fear of plague in 
the Middle Ages have this in common: no rational explanation for 
the disease and no way to combat it. But what makes cancer so 
intractable and mysterious, the biological equivalent of Fermat’s 
last theorem? Th e answer lies in the way scientists and clinicians 
have been looking at the problem. Most cancer researchers think 
they already know the basic cause of cancer: genetic mutations 
in specific genes (Strauss 1998). However, the gene mutation 
hypothesis has not led to an understanding of even the most basic 
questions of how cancer starts and progresses. For example, in a 
commentary in the Proceedings of the National Academy of Sciences, 
Boland and Ricciardiello asked: “How many mutations does it take 
to make a tumor?” (Boland and Ricciardiello 1999). Th e answer 
was apparently 11,000 (Stoler et al. 1999). Boland and Ricciardiello 
rightly asked how does this result fi t with central concepts such as 
clonal expansion and multi-step carcinogenesis? Indeed, questions 
that go to the heart of the mutation theory, which currently says 
only 4–6 mutations (Hahn and Weinberg 2002b) are needed to 
cause cancer.
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If the current doctrine that cancer is caused by gene mutations 
was on the right track, the confusion and debate among cancer 
experts should have diminished in recent years instead of 
accelerating. Furthermore, cancer statistics should by now show 
obvious signs of progress but they don’t. Th e worsening situation 
is leading some cancer researchers to look for an escape from 
the quagmire of mutation theory. What is needed is a new, more 
productive way to think about cancer.

Th e solution one comes up with depends strongly on how one 
looks at the problem. To see this, consider your favorite puzzle or 
even better, a well executed magic trick. A world-class magician 
produces surprise and delight by negating everyday experience 
and shattering the rules of causality. Th e magic in the magic trick 
is to make the audience look at the trick in such a way as to make 
it appear incomprehensible, unfathomable, impenetrable, baffl  ing, 
perplexing, mystifying, bewildering—how cancer appears today. 
However, looking at the same magic trick in a diff erent way (the 
way another magician would) reveals it to be completely consistent 
with the logic of how things happen. Once the trick is revealed, 
the magic disappears and the rational world is restored. By looking 
at the cancer problem in a diff erent way it is possible to lift  the 
shroud concealing the unifying simplicity behind cancer.

Interest in cancer cytogenetics infl uenced human cytogenetics 
much more profoundly than is currently appreciated. For example, 
the main goal behind the study that eventually led to the description 
of the correct chromosome number in man was to identify what 
distinguished a cancer cell (Tjio and Levan 1956). Th e motivation 
was not primarily an interest in the normal chromosome 
constitution, which at that time had no obvious implications, but 
the hope that such knowledge would help answer the basic question 
of whether chromosome changes lay behind the transformation of 
a normal cell to cancer (Heim and Mitelman 2009).

Normal human cells turned out to have 23 different 
chromosomes that come in pairs, half from each parent, to yield a 
total of 46 chromosomes. Such cells are said to be “diploid.” Cells 
found in solid tumors, on the other hand, typically have 60–90 
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chromosomes (Shackney et al. 1995a). Th eir ploidy is “not good,” 
in other words, and the Greek term is “aneuploid.” It is a word you 
will have a hard time fi nding in the cancer chapters of the leading 
textbooks of biology.

Recall that the genes (of which there may be 25,000 or so in 
humans (Collins et al. 2004)) are strung along the chromosomes, so 
that each chromosome contains thousands of genes. Any cell with 
a chromosome number diff erent from 46 and not an exact multiple 
of 23, or with an abnormal complement of chromosomes that add 
up to 46, is an aneuploid cell. Thus, aneuploid cells contain an 
imbalance in the complement of genes and chromosomes compared 
to the normal or “diploid” cell. Th is imbalance in the chromosomes 
leads to a wide variety of problems, one of which is cancer.

Another problem caused by aneuploidy that is familiar to most 
people is Down syndrome. Th is results when a baby is born with 
three copies of chromosome 21 instead of the normal two. Just 
one extra copy of the smallest chromosome, with its thousand 
or so normal genes, is suffi  cient to cause the syndrome (Shapiro 
1983). Most Down fetuses are spontaneously aborted. Nonetheless, 
the imbalance is small enough (47 chromosomes) to permit 
occasional live births. Th e level of aneuploidy is therefore far below 
the threshold of 60–90 chromosomes found in invasive cancer, but 
it gives these patients a head start toward developing the same 
cancers that normal people get. Down syndrome patients have up 
to a 30-fold increased risk of leukemia, for example, compared to 
the general population (Patja et al. 2006, Shen et al. 1995, Zipursky 
et al. 1994).

Th ere is one important diff erence between the small chromosome 
imbalance found in Down syndrome, and the more pronounced 
aneuploidy of cancer cells. With Down syndrome, the defect occurs 
in the germ line and so the chromosomal error is present in every 
cell in the body. But the defect that gives rise to the unbalanced 
complement of chromosomes in cancer cells is “somatic”. Th at is, 
it occurs in a particular cell aft er the body is formed. In the course 
of life, cells constantly divide by a process called mitosis. When 
errors in mitosis occur, as they oft en do, the possibility exists that 
a daughter cell will be aneuploid.
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Aneuploidy destabilizes a dividing cell in much the same way 
that a dent disrupts the symmetry of a wheel, causing ever-
greater distortions with each revolution. As aneuploid cells divide, 
their genomes become increasingly disorganized to the point 
where most of these cells stop dividing and many die. But rarely, 
and disastrously, an aneuploid cell with the right number and 
combination of chromosomes wins the genetic lottery and keeps 
right on going. Th en it has become a cancer cell.

Cells with a normal number of chromosomes are intrinsically 
stable and not prone to transformation into cancer. What, therefore, 
causes normal cells to become aneuploid? Th at is a hotly contested 
question. It is known, however, that radioactive particles striking 
the nucleus or cytoplasm either kill or damage a cell. When the 
damaged cell then divides by mitosis, an error may arise leading to 
chromosomal imbalance. In short, radiation can cause aneuploidy. 
And certain chemicals, such as tars, also give rise to aneuploid 
cells. Tars and radiation sources are known carcinogens. In fact, all 
carcinogens that have been examined do cause aneuploidy.

Th at is a strong argument for the aneuploidy theory of cancer, 
but in order to understand the controversy one must understand 
the alternative theory. Everyone has heard of it because it is in the 
newspapers all the time. It is the gene mutation theory of cancer. 
According to this theory, certain genes, when they are mutated, 
turn a normal cell into a cancer cell. Th is theory has endured since 
the 1970s, and more than one Nobel Prize has been awarded to 
researchers who have made claims about it. One prize-winner was 
the former director of the National Institutes of Health, Harold 
Varmus. According to some researchers, the mutation of just one, 
or perhaps several genes, may be suffi  cient to transform a normal 
cell into a cancer cell.

In contrast, aneuploidy disrupts the normal balance and 
interactions of many thousands of genes, because just one 
chromosome typically contains thousands of genes. And a cancer 
cell may have several copies of a given chromosome. For this 
reason alone, aneuploidy is far more devastating to the life of a cell 
than a small handful of gene mutations.

Chromosomal-ch-pre.indd-28-02-2011.indd   XChromosomal-ch-pre.indd-28-02-2011.indd   X 9/14/2011   4:38:36 PM9/14/2011   4:38:36 PM



Preface XI

Th e fundamental diff erence between the chromosomal imbalance 
theory and the reigning gene mutation theory may be put this way. 
If the whole genome is a biological dictionary, divided into volumes 
called chromosomes, then the life of a cell is a Shakespearean 
drama. If one were to misspell a word here and there, in Hamlet 
for example, such “mutations” would be irrelevant to the vast 
majority of readers, or theater-goers. A multicellular organism is 
at least as resistant to “gene mutations” as a Shakespeare play.

On the other hand, without “mutating” a single word, one could 
transform the script of Hamlet into a legal document, a love letter, 
a declaration of independence, or more likely gibberish, by simply 
shifting and shuffling, copying and deleting numerous individual 
words, sentences and whole paragraphs. Th at is the literary equivalent 
of what aneuploidy does. Th e most effi  cient means of rewriting a 
cell’s script is the wholesale shift ing and shuffl  ing of the genes, which 
aneuploidy or chromosomal imbalance accomplishes admirably.

Aneuploidy is known to be an effi  cient mechanism for altering 
the properties of cells, and it is also conceded that aneuploid cells 
are found in virtually all solid tumors. Bert Vogelstein of Johns 
Hopkins University has said that “at least 90 percent of human 
cancers are aneuploid.” Th e true fi gure is 100 percent since there is 
not one confi rmed diploid cancer (Section 4.4.4).

Nonetheless, the presence of mutations in a handful of genes 
continues to be viewed as a signifi cant, even a causal factor in 
carcinogenesis, even though any given mutated gene is found in 
only a minority of cancers. Cells with mutated genes can indeed 
be found in cancerous as well as normal cells, but it is becoming 
increasingly clear the vast majority of mutations are innocuous. 
Hence they are readily accommodated during the expansion of 
barely viable aneuploid cells as they compete for survival with their 
more viable chromosomally balanced counterparts. Th e current 
emphasis in cancer research on the search for mutant genes in a 
perpetual background of aneuploidy is a classic example of not 
seeing the forest for the trees.

Th omas Kuhn remarked that the great theoretical advances of 
Copernicus, Newton, Lavoisier, and Einstein had less to do with 
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defi nitive experiments than with looking at old data from a new 
perspective. Suffi  cient (indeed overwhelming) evidence is already 
at hand to convict aneuploidy of the crime of cancer and release 
gene mutations from custody (Aldaz et al. 1987, Aldaz et al. 1988a, 
Aldaz et al. 1988b, Brinkley and Goepfert 1998, Duesberg et al. 
1998, Duesberg 1999, Duesberg et al. 2000a, Duesberg et al. 2000b, 
Duesberg et al. 2000c, Duesberg et al. 2001a, Duesberg et al. 2001b, 
Duesberg and Li 2003, Duesberg 2003, Duesberg et al. 2004a, 
Duesberg et al. 2004b, Duesberg et al. 2006, Fabarius et al. 2003, 
Heng et al. 2006b, Klein et al. 2010, Li et al. 1997, Li et al. 2000, 
Li et al. 2009, Liu et al. 1998, Rasnick and Duesberg 1999, Rasnick 
and Duesberg 2000, Rasnick 2000, Reisman et al. 1964a, Reisman 
et al. 1964b, Ye et al. 2009). Nevertheless, the gene mutation 
theorists, when faced with the undeniable evidence that aneuploidy 
is necessary for cancer, have adopted a fall-back position. Th ey 
argue that gene mutations must initiate the aneuploidy (Sen 2000), 
or as the Scientifi c American reported, referring to a researcher in 
Vogelstein’s lab, “[Christoph] Lengauer insists aneuploidy must be 
a consequence of gene mutations” (Gibbs 2001). Th ere would be 
no need to “insist” if there were proof that gene mutations really 
do cause aneuploidy and cancer.

What would gravely weaken the aneuploidy theory would be 
confi rmed cases of diploid cancer (in which the tumor cells have 
balanced chromosomes), and with the culprit genes found lurking 
in every cell. Th at would go a long way toward proving the gene 
mutation theory. But where has that been demonstrated? It would 
be a front-page story. Th e truth is that researchers have not yet 
produced any convincing examples of diploid cancer.

In fact, the evidence is going the other way. Th ere is a growing 
list of carcinogens that do not mutate genes at all (Section 4.1.4). 
In addition, there are no cancer-specifi c gene mutations (Section 
4.4.2). Even tumors of a single organ rarely have uniform genetic 
alterations (Section 4.4.3). And, in a rebuttal that should be 
decisive, no genes have yet been isolated from cancers that can 
transform normal human or animal cells into cancer cells (Section 
4.4.4). Moreover, the latent periods between the application of a 
carcinogen and the appearance of cancer are exceedingly long, 
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ranging from many months to decades, in contrast the eff ects of 
mutation are instantaneous (Section 4.4.5).

The goal of billions of dollars and decades of research was 
to come up with a clear and simple statement of how cancer 
genes cause or promote cancer. Th is was certainly the hope and 
expectation of most cancer researchers. One of the hallmarks of a 
bad theory is when its evolution becomes so complex and confused 
that experts in the fi eld have diffi  culty explaining it. Th omas Ried, 
a major researcher at the National Cancer Institute in Bethesday, 
recently labored to…

speculate that the activation of specific oncogenes, and the inactivation 
of tumor suppressor genes act in concert with the deregulation of genes 
as a consequence of low-level copy number changes that provide the 
metabolic infrastructure for increased proliferation. One of the challenges 
in understanding the genome mutations in carcinomas will be to 
elucidate whether the presence of a tumor suppressor gene on frequently 
lost chromosomes, or the presence of an oncogene on frequently gained 
chromosomes is suffi  cient to fully explain the reason for the defi ning and 
recurrent patterns of genomic imbalances. In other words, we will need 
means to experimentally dissect the relative contribution of specifi c oncogene 
activation vis-a-vis the global transcriptional deregulation imposed by 
chromosome-wide copy number changes. Only then will we be in a position 
to truly verify or falsify Boveri’s central statement, i.e., the dominant role 
of inhibiting and promoting chromosomes that formed the basis for his 
chromosome theory of cancer. 

(Ried 2009)

Th e conceptual barriers to accepting aneuploidy as the cause 
of cancer are not trivial but they shrink in comparison with the 
political and sociological obstacles. US taxpayers have forked over 
hundreds of billions of dollars in the war on cancer only to fi nd 
that after 40 years of battling viruses, “oncogenes”, and “tumor 
suppressor” genes we are losing the war (Epstein 1998). But it is 
a one-front war with almost no resources devoted to alternative 
approaches. In spite of a century of evidence implicating aneuploidy 
as the cause of cancer, a leading researcher guesses that, “If you were 
to poll researchers … 95 percent would say that the accumulation 
of mutations [to key genes] causes cancer” (Gibbs 2001).

Chromosomal-ch-pre.indd-28-02-2011.indd   XIIIChromosomal-ch-pre.indd-28-02-2011.indd   XIII 9/14/2011   4:38:36 PM9/14/2011   4:38:36 PM



XIV Preface

The biotech industry has bet heavily on cancer diagnostics 
and therapeutics based entirely on the gene mutation theory. 
The highly publicized sequencing of the human genome, the 
commercialization of diagnostic tests for cancer genes (Arnold 
2001, Hanna et al. 2001, Wagner et al. 2000), and the hype about 
Gleevec being “at the forefront of a new wave of cancer treatments 
[that] diff ers from other existing chemotherapies because it aff ects 
a protein that directly causes cancer” (McCormick 2001) make it 
even more diffi  cult for researchers to consider the possibility that 
mutant genes may not cause cancer aft er all.

Max Planck said that, “A new scientifi c truth does not triumph 
by convincing its opponents and making them see the light, but 
rather because its opponents eventually die, and a new generation 
grows up that is familiar with it” (Planck 1949). It is encouraging to 
see that a new generation of cancer researchers are more inclined 
to accept aneuploidy as an alternative to gene mutation.

Chromosomal imbalance theory shows how gene mutations are 
not powerful enough to cause cancer (Section 5.4). It explains how 
cancer is initiated (Chapter 5) and why progression takes years 
to decades (Section 6.1.3). It explains the global or macroscopic 
characteristics that readily identify cancer: anaplasia, autonomous 
growth, metastasis, abnormal cell morphology, DNA indices 
ranging from 0.5 to over 2, genetic instability, and the high 
levels of membrane-bound and secreted proteins responsible for 
invasiveness and loss of contact inhibition (Chapters 5 & 6). It 
explains the common failure of chemotherapy (Section 7.3) and 
why cancer cells oft en become drug resistant even to drugs they 
were never exposed (Sections 5.3.5 & 6.2.4). It provides objective, 
quantitative measures for the detection of cancer and monitoring 
its progression (Section 7.2). It suggests non-toxic strategies of 
cancer therapy and prevention (Section 7.3). Th e chromosomal 
imbalance theory is the most comprehensive, productive, and 
satisfying explanation of carcinogenesis. In short: Th e Autocatalyzed 
Progression of Aneuploidy is Carcinogenesis.

David Rasnick
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